CO2/Brine transport into shallow aquifers along fault zones.

نویسندگان

  • Elizabeth H Keating
  • Dennis L Newell
  • Hari Viswanathan
  • J W Carey
  • G Zyvoloski
  • Rajesh Pawar
چکیده

Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and Hydrogeological Controls on Hydrocarbon and Brine Migration into Drinking Water Aquifers in Southern New York.

Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petro...

متن کامل

CO2 Sequestration in Deep Aquifers

Disposal and long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to reducing global warming. Deep, regional-scale aquifers in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including multiphase flow of CO2, groundwater, and brine, to evaluate residence times in pos...

متن کامل

Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the like...

متن کامل

Modeling the potential impacts of CO2 sequestration on shallow groundwater: The fate of trace metals and organic compounds before and after leakage stops

Large-scale deployment of CO2 geological sequestration requires understanding and assessing the risks of such an operation. One of these risks is the potential contamination of groundwater by CO2/brine leakage into shallow aquifers. Although our understanding of this issue has improved significantly over the last decade, several questions still need to be better addressed, including the fate of...

متن کامل

Accelerating CO2 Dissolution in Saline Aquifers for Geological Storage — Mechanistic and Sensitivity Studies

One of the important challenges in geological storage of CO2 is predicting, monitoring, and managing the risk of leakage from natural and artificial pathways such as fractures, faults, and abandoned wells. The risk of leakage arises from the buoyancy of free-phase mobile CO2 (gas or supercritical fluid). When CO2 dissolves into formation brine, or is trapped as residual phase, buoyancy forces a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 47 1  شماره 

صفحات  -

تاریخ انتشار 2013